Ícono del sitio China Fundición a presión | Fundición a presión de aluminio

¿Qué es la fundición para vehículos eléctricos? Proceso y aleaciones

piezas moldeadas ev

La fundición para vehículos eléctricos incorpora métodos de vanguardia como la fundición giga para fabricar piezas de automoción complejas y ligeras. Los vehículos eléctricos dominan el mercado mundial de la automoción. Según Market Watch, las ventas de coches eléctricos pasarán de 1 millón a 1,6 millones en 2023. Tecnologías como la fundición de vehículos eléctricos con la técnica del giga casting están ofreciendo una alternativa sostenible a los coches de gasolina.

Principales conclusiones:

1.       Proceso de fundición EV

2.       Proceso de fundición de vehículos eléctricos

3.       Materiales de fundición EV

4.       Nuevas aleaciones y compuestos en la fundición a presión EV

Procesos de fundición EV

Electric vehicle casting is a comprehensive process involving critical steps to produce high-quality, efficient parts. It offers distinct advantages and limitations for shaping different components. Let’s look into the key processes involved in EV casting, including design, material preparation, various casting methods, and post-casting procedures.

1.     Diseño y creación de moldes

La fundición de vehículos eléctricos incorpora el paso fundamental del diseño y la creación de moldes. En este proceso, el software de diseño asistido por ordenador se adapta para crear diseños precisos e intrincados de los componentes necesarios del vehículo eléctrico. Estos diseños son capaces de soportar las altas presiones y temperaturas de la fundición. Tras su creación, se utilizan para crear moldes de acero u otros materiales duraderos.

2.     Preparación del material

La fase de preparación del material es esencial para lograr resultados de alta calidad en la fundición. Esta etapa implica la selección y preparación de aleaciones metálicas, como el aluminio. El aluminio es la aleación más utilizada en la fundición de vehículos eléctricos por su ligereza y resistencia. Los fabricantes funden las aleaciones en hornos a una temperatura específica y las preparan para el proceso de fundición.

3.     Métodos de fundición

Los componentes EV pueden fabricarse adaptando varios métodos de fundición, cada uno con sus ventajas y aplicaciones específicas.

                                I.            Fundición a alta presión

                              II.            Fundición por gravedad

                            III.            Otras técnicas de fundición

       I.            Fundición a alta presión

Resumen del proceso

En el método de fundición a alta presión, el metal fundido se inyecta en la cavidad de un molde a una presión extrema. Este método permite fabricar componentes con un excelente acabado superficial y precisión dimensional. 

Ventajas para los vehículos eléctricos

This process is beneficial for electric vehicles, producing large, complex parts in a single piece. It helps reduce the number of joints and welds required. It enhances the structural integrity of components and reduces their weight. That improves the vehicle’s efficacy and range.

Aplicaciones en vehículos eléctricos

El fabricante de vehículos eléctricos prefiere el proceso de fundición a alta presión (HPDC). Este método permite crear piezas fundidas de gran tamaño y de una sola pieza. Se utiliza específicamente para fabricar diversas piezas de vehículos eléctricos, como carcasas de baterías, carcasas de motores y piezas estructurales.

     II.            Fundición por gravedad

Resumen del proceso

Los fabricantes emplean la técnica de fundición por gravedad para verter el metal fundido en un molde mientras es arrastrado gravitacionalmente hasta su lugar. Es un método más sencillo que la fundición a alta presión. Esta técnica requiere un control preciso del proceso de vertido para mejorar la calidad de las piezas fundidas.

Ventajas para los vehículos eléctricos

Es beneficioso para crear piezas grandes de paredes gruesas que requieren una integridad estructural superior. Puede fabricar producciones más pequeñas o componentes especializados de forma rentable.

Aplicaciones en vehículos eléctricos

Este procedimiento se utiliza para fabricar bloques de motor, piezas de suspensión y otros elementos estructurales que requieren una gran resistencia y durabilidad.

  III.            Otras técnicas de fundición

Fundición en arena

Se crea un molde con una mezcla de arena para verter el metal fundido en la cavidad del fundición de aluminio en arena método. Es adecuado para fabricar componentes complejos, de gran tamaño y con detalles intrincados.

Fundición a la cera perdida

Es una estrategia de fundición eficaz que puede emplearse para producir piezas de dimensiones perfectas con mejores acabados superficiales, también llamada fundición a la cera perdida. Esta técnica incluye la creación de un molde de cera de la pieza recubierto con una cáscara de cerámica y, a continuación, la fusión de la cera para hacer un molde.

4.     Enfriamiento y solidificación

Este paso incluye el enfriamiento y la solidificación del metal después de inyectarlo en el molde mientras aún está fundido. La velocidad de enfriamiento puede influir directamente en la microestructura y las propiedades mecánicas de los componentes finales. Por lo tanto, la técnica de enfriamiento controlado ayuda a conseguir la resistencia y durabilidad deseadas.

5.     Desmontaje y limpieza

Tras el proceso de enfriamiento y solidificación, la pieza fundida se extrae del molde rompiéndolo con una mezcla de arena o abriéndolo en el caso del HPDC. Además, implica la fase de limpieza, en la que se eliminan los materiales residuales del molde, las rebabas o las capas de óxido.

6.     Acabado e inspección

El mecanizado adicional, el pulido y la aplicación de cualquier revestimiento necesario se realizan durante el proceso de acabado e inspección. Esta fase ayuda al fabricante a crear componentes con acabados superficiales y dimensiones precisas. La fase de inspección garantiza que el producto final cumple las normas de calidad exigidas.

Ventajas de las piezas moldeadas EV

Las técnicas de fundición a presión ofrecen varias ventajas para dar forma al futuro de los vehículos eléctricos, sobre todo cuando se abordan cuestiones como el peso, el diseño y el coste. Descubramos estas ventajas:

Reducción de peso y mayor autonomía

Su principal ventaja para los vehículos eléctricos es la reducción de peso. La selección de materiales ligeros, como el aluminio en HPDC (fundición a alta presión), reduce el peso total de los vehículos. Los vehículos ligeros poseen una mayor eficiencia y una autonomía de conducción mejorada.

Flexibilidad de diseño y geometrías complejas

La fundición para vehículos eléctricos puede producir geometrías excepcionalmente complejas y ofrecer flexibilidad de diseño, eliminando la necesidad de métodos de fabricación tradicionales. Ayuda a optimizar el rendimiento de las piezas, incluyendo características como intrincados canales de refrigeración y estructuras de soporte integradas.

Rentabilidad y escalabilidad

Los procesos HPDC y de fundición por gravedad son rentables y escalables. Sin embargo, los costes iniciales de creación de moldes y equipamiento pueden ser elevados. El coste por unidad disminuye significativamente al aumentar los volúmenes de producción. Esta escalabilidad ayuda a que los vehículos eléctricos sean más asequibles y accesibles a un mercado más amplio.

Integridad estructural y durabilidad mejoradas

Las piezas de fundición para vehículos eléctricos mejoran la integridad estructural y la durabilidad de los vehículos con fines de seguridad y longevidad. Este método evita que se formen tensiones internas en los componentes, lo que garantiza unas propiedades mecánicas excelentes. Esto puede ser necesario para piezas expuestas a grandes cargas y tensiones, como las suspensiones y las carcasas de las baterías.

Ventajas de la gestión térmica

La gestión térmica es otra ventaja eficaz de las piezas de fundición EV. Los componentes fabricados mediante procesos de fundición pueden incluir soluciones de refrigeración integradas. La fundición ayuda a gestionar el calor de forma más eficiente y mejora el rendimiento general y la seguridad del vehículo.

Materiales utilizados en las piezas moldeadas EV

The appropriate selection of casting material makes a major difference in the output results. The manufacturer can successfully create lightweight vehicles with improved performance by choosing the right materials. Let’s discover the available options that can be employed for EV casting.

Aleaciones de aluminio

Las aleaciones de aluminio ofrecen excelentes características, como maquinabilidad, baja densidad, durabilidad, resistencia a la oxidación y buena conformabilidad. Este material es muy ligero y posee la resistencia adecuada para diversos componentes de vehículos eléctricos, al tiempo que ofrece una buena conformabilidad. Su resistencia superior a la corrosión aumenta la longevidad de las piezas de los vehículos eléctricos expuestas a condiciones ambientales.

Aleaciones específicas de aluminio

Las aleaciones de aluminio específicas como la A356, la A6061 y la 7050 poseen una gran resistencia, colabilidad y buena resistencia a la corrosión, lo que las convierte en la opción preferida para la fundición. Estas aleaciones se utilizan para cumplir los requisitos de resistencia y durabilidad de piezas como carcasas de motores, aplicaciones de alta tensión y cajas de baterías.

Aleaciones de magnesio

Las aleaciones de magnesio como la AZ81D ofrecen propiedades de ligereza y facilidad de fundición. Estos materiales son adecuados para componentes que requieren un ahorro de peso, como los bastidores de las baterías y las piezas estructurales. El avance de las tecnologías de revestimiento tiene su viabilidad, a pesar de su menor resistencia a la corrosión.

Aleaciones de zinc

Zinc material can be used for manufacturing small, intricate parts that require excellent dimensional stability. These alloys can be combined with aluminum and magnesium, allowing the manufacturer to optimize each component’s performance. Ensuring the balance of weight, strength, and durability in EVs.

Fundición multimaterial

La fundición multimaterial consiste en combinar diferentes aleaciones en un mismo componente. Esta técnica puede mejorar las prestaciones, como la gestión térmica y la integridad estructural, y ayudar a reducir el peso. Resulta beneficiosa para crear piezas complejas que requieren distintas propiedades en varias secciones.

Aplicaciones de las piezas moldeadas EV

        Carcasas de motor

        Bandejas para pilas

        Cajas de transmisión

        Disipadores de calor

        Inversores

Carcasas de motor

Las piezas de la carcasa del motor protegen los motores eléctricos de daños externos al tiempo que garantizan una gestión térmica adecuada. En particular, el aluminio y el magnesio se utilizan para crear este componente por su ligereza, resistencia y excelentes propiedades de disipación térmica.

Bandejas para pilas

Las bandejas para baterías aseguran y sujetan las celdas de las baterías de los vehículos eléctricos y pueden fabricarse con materiales ligeros como el aluminio. Estas aleaciones reducen el peso total del vehículo y mejoran la autonomía. Además, estas bandejas están diseñadas para ser resistentes y anticorrosión, lo que garantiza la longevidad de las piezas.

Cajas de transmisión

Las cajas de transmisión de los vehículos eléctricos son los componentes encargados de transferir la potencia del motor a las ruedas. Los materiales de aluminio son una opción adecuada para crear esta aplicación. Porque tiene una gran resistencia y la capacidad de soportar las tensiones mecánicas de la transmisión de potencia.

Disipadores de calor

the electronic components in electric vehicles generate excessive heat that can be managed by utilizing heat sinks. Aluminum can meet these applications’ needs for superior thermal conductivity. It helps maintain the optimal operating temperature and reduces the chances of overheating.

Inversores

Los fabricantes emplean aplicaciones de inversores para convertir la corriente continua del vehículo en corriente alterna. Fabrican estas piezas con aluminio para que disipen eficazmente el calor y protejan los componentes electrónicos sensibles.

Retos y limitaciones de las piezas moldeadas EV

Para hacer frente a los diversos retos, la incorporación de VE requiere continuas innovaciones en la ciencia de los materiales, la tecnología de fundición y el ensamblaje. Descubra algunos de los enormes retos y limitaciones de los VE.

        Propiedades de los materiales

        Porosidad y defectos de fundición

        Unión y montaje

Propiedades de los materiales

Las propiedades de los materiales desempeñan un papel fundamental en los resultados. Presentan características inherentes y no siempre proporcionan la resistencia y durabilidad necesarias para determinadas aplicaciones. La selección del material para la fundición EV debe equilibrar la reducción de peso con el rendimiento mecánico, lo que puede resultar un compromiso complicado.

Porosidad y defectos de fundición

La porosidad y los numerosos defectos de fundición son preocupaciones cruciales en la fabricación de fundición a presión. La porosidad o la presencia de diminutas bolsas de aire pueden producirse durante el proceso de fundición del metal.

Este defecto puede debilitar la integridad estructural de los componentes y surgir de diversos factores. Por ejemplo, una mala gestión de la técnica de fundición, un diseño inadecuado del molde o la contaminación. Este reto exige un control riguroso del proceso y métodos avanzados de inspección de la calidad.

Unión y montaje

La unión y el ensamblaje indican otro reto crucial de los componentes de fundición en los vehículos eléctricos. Los métodos tradicionales de soldadura y fijación son los preferidos para materiales ligeros como el aluminio y el magnesio.

Las diferencias de dilatación térmica y las necesidades de alineación precisa pueden causar complicaciones en el proceso de montaje. Para eliminar este reto, es necesario recurrir a la soldadura por fricción o a la unión adhesiva. Eso puede garantizar la capacidad de resistencia y la fiabilidad de las piezas de fundición.  

El futuro de la fundición EV

La integración de tecnologías punteras y aleaciones adecuadas impulsará la evolución de las piezas de fundición para vehículos eléctricos. Sin embargo, su futuro encierra un inmenso potencial de nuevos avances y adelantos:

        Fabricación aditiva de moldes de fundición

        Simulación y modelización

        Nuevas aleaciones y compuestos

Fabricación aditiva de moldes de fundición

La industria de los componentes para vehículos eléctricos se está revolucionando gracias a la fabricación aditiva o impresión 3D. Esta tecnología reduce los plazos de entrega y los costes, y ofrece la creación rápida de prototipos y la personalización de diseños complejos.

 Además, esta fabricación mejora la eficacia general y la calidad de las piezas al permitir geometrías de molde más intrincadas y precisas.

Nuevas aleaciones y compuestos en la fundición a presión EV

Aleaciones de aluminio

-         A380

-         6061

Propiedades de las aleaciones de aluminio para fundición a presión EV

-         Densidad: Aproximadamente 2,7 g/cm³

-         Punto de fusión: 660°C (1220°F)

-         Young’s Modulus: 69 GPa (10,000 ksi)

-         Resistencia a la tracción: 90-690 MPa (13-100 ksi)

-         Límite elástico: 50-600 MPa (7-87 ksi)

-         Alargamiento a la rotura: 1-40%

-         Conductividad térmica: 150-200 W/m-K

Aleaciones de magnesio

-         AZ91D

-         AM60

Propiedades de las aleaciones de magnesio para fundición a presión EV

-         Densidad: Aproximadamente 1,74 g/cm³

-         Punto de fusión: 650°C (1202°F)

-         Young’s Modulus: 45 GPa (6,500 ksi)

-         Resistencia a la tracción: 150-340 MPa (22-49 ksi)

-         Límite elástico: 65-230 MPa (9-33 ksi)

-         Alargamiento a la rotura: 2-10%

-         Conductividad térmica: 60-90 W/m-K

Aleaciones de zinc

-         Zamak 3

-         Zamak 5

Propiedades de las aleaciones de zinc para fundición a presión EV

-         Densidad: Aproximadamente 6,6-6,7 g/cm³.

-         Punto de fusión: 420°C (788°F)

-         Young’s Modulus: 83 GPa (12,000 ksi)

-         Resistencia a la tracción: 250-400 MPa (36-58 ksi)

-         Límite elástico: 150-300 MPa (22-43 ksi)

-         Alargamiento a la rotura: 1-10%

-         Conductividad térmica: 110-120 W/m-K

Conclusión:

Los fabricantes de vehículos eléctricos buscan constantemente nuevas formas de incorporar piezas de fundición ev.  Aludiecasting ofrece una amplia gama de técnicas de fundición para VE. Utilizamos aleaciones ligeras de aluminio para fabricar piezas a medida como carcasas de motor y bandejas de baterías. 

 

Salir de la versión móvil