Cos'è la pressofusione di zinco
La pressofusione di zinco si distingue come un metodo ad alta produzione eccezionalmente efficiente e versatile, offrendo componenti metallici robusti, precisi e complessi. Nell’ambito della pressofusione dello zinco emergono due famiglie di leghe primarie. Il primo è il gruppo convenzionale, noto come leghe ZAMAK, con nomenclatura basata sul loro sviluppo sequenziale: Lega 3, Lega 5 e Lega 7. D’altro canto ci sono le leghe di zinco ad elevato contenuto di alluminio rispetto a quelle convenzionali, note come leghe ZA. Questa categoria comprende ZA-8, ZA-12 e ZA-27, che offrono maggiore resistenza e proprietà portanti vantaggiose. Il processo si rivela prezioso per la produzione di diversi componenti.
Διαδικασία πρεσαρίσματος ζινκού
La pressofusione di zinco è un processo produttivo che prevede la produzione di parti metalliche utilizzando lo zinco come materiale primario. Questo processo viene comunemente utilizzato per creare componenti complessi e dettagliati per vari settori, tra cui quello automobilistico, elettronico e dei beni di consumo. Ecco una panoramica del processo di pressofusione di zinco:
1. Προετοιμασία της σφραγίδας:
• Il processo inizia con la realizzazione di uno stampo in metallo, detto anche trafila. Le matrici sono generalmente realizzate in acciaio per utensili temprato e sono costituite da due metà, la “matrice di copertura” e la “matrice di espulsione”.
- Οι στάμπες είναι κατασκευασμένες με ακρίβεια για να δημιουργηθεί η επιθυμητή μορφή του τελικού προϊόντος.
2. Fusione e iniezione:
- Το ζινκό, με τη μορφή σφαιριδίων λεγάνας, ψήνεται σε φούρνο σε θερμοκρασία μεταξύ 425°C (800°F) και 455°C (850°F).
• Una volta fuso, lo zinco liquido viene iniettato nello stampo ad alta pressione mediante una pressa idraulica o meccanica. La pressione aiuta a garantire che il metallo fuso riempia l’intera cavità dello stampo.
3. Raffreddamento:
• Dopo l’iniezione, il metallo fuso comincia a raffreddarsi e solidificarsi all’interno dello stampo.
- Το χρονικό διάστημα του καθαρισμού ελέγχεται προσεκτικά για την επίτευξη των επιθυμητών ιδιοτήτων του τελικού προϊόντος.
4. Espulsione:
- Una volta solidificato il getto, le due metà dello stampo vengono separate e la parte appena formata viene espulsa.
- Οι σπάγκοι, που αποτελούν μέρος του γραμματοσήμου, βοηθούν στην εξάπλωση της σύντηξης έξω από το γραμματόσημο.
5. Rifilatura e rifinitura:
- Η σύντηξη παρουσιάζει ελάχιστο υλικό σε έκκεντρο, το οποίο ονομάζεται bava, και το οποίο έχει αναγεννηθεί με τη διαδικασία rifilatura.
• Ulteriori processi di finitura, come lavorazione meccanica o trattamenti superficiali, possono essere impiegati per ottenere l’aspetto finale e le tolleranze desiderate.
6. Έλεγχος ποιότητας:
- Εφαρμόζονται ποικίλες μέθοδοι ελέγχου της ποιότητας για να διασφαλιστεί ότι τα παραγόμενα τεμάχια ανταποκρίνονται στα συγκεκριμένα πρότυπα.
• L’ispezione può comportare controlli visivi, misurazioni dimensionali e altri metodi di prova.
7. Recupero e Riciclo:
- Il materiale in eccesso o residuo del processo di fusione, come canali di colata e canali, viene generalmente riciclato per un uso futuro.
La pressofusione di zinco offre numerosi vantaggi, tra cui un’elevata precisione dimensionale, un’eccellente finitura superficiale e la capacità di produrre forme complesse con tolleranze strette. È un metodo economico ed efficiente per la produzione di massa di parti metalliche. La versatilità delle leghe di zinco, come la Zama, le rende adatte ad un’ampia gamma di applicazioni.
ΠΟΙΑ ΕΊΝΑΙ ΤΑ ΠΛΕΟΝΕΚΤΉΜΑΤΑ ΤΗΣ ΠΙΕΣΤΙΚΉΣ ΨΕΥΔΑΊΣΘΗΣΗΣ ΤΟΥ ΖΊΝΚΟ;
Quando si discutono i vantaggi della pressofusione dello zinco, diventa evidente che altri processi di fusione spesso faticano a eguagliare l'efficienza in termini di tempi di produzione offerta dallo zinco. Υπάρχουν πολλές μέθοδοι σύντηξης για την παραγωγή με οικονομικό τρόπο τμημάτων σύντηξης διαφόρων διαστάσεων και ποσοτήτων. Tuttavia, la pressofusione di zinco si distingue per tassi di produzione notevolmente più rapidi rispetto alle alternative di alluminio o magnesio.
Inoltre, le leghe di zinco mostrano la capacità di essere fuse con tolleranze più strette rispetto a qualsiasi altro metallo o plastica stampata. Il concetto di produzione “Net Shape” o “Zero Machining” diventa un vantaggio fondamentale nella fusione di zinco. Questo processo consente di ottenere una ripetibilità inferiore a ± 0,001″ per componenti più piccoli, un livello di precisione eguagliato solo da alcuni processi selezionati, come la pressofusione dell’alluminio, che può fornire prestazioni comparabili in termini di forma netta eliminando la necessità di lavorazioni aggiuntive.
Un altro vantaggio significativo inerente alla pressofusione di zinco deriva dall’eccezionale fluidità, resistenza e rigidità della fusione dello zinco. Queste proprietà consentono la progettazione di sezioni a parete sottile, con conseguente riduzione del peso e risparmio sui costi dei materiali. PHB Corp. gestisce con competenza tutti gli aspetti della pressofusione delle leghe di zinco, dalla progettazione e test degli stampi alla produzione vera e propria di componenti di zinco, finitura e imballaggio. Lo sfruttamento delle eccellenti proprietà portanti e antiusura dello zinco non solo consente una maggiore flessibilità di progettazione, ma contribuisce anche a ridurre i costi di fabbricazione. Questa capacità consente la trasformazione di specifiche di progettazione complesse in un prodotto finito in modo rapido e con la massima efficienza.
Τι είδους πόδια από ζίνκο θα χρησιμοποιηθούν για την πρέσα;
Η πρεσοσυγκόλληση ζινκόχρησιμοποιεί κοινά κομμάτια ζινκό με συγκεκριμένες συνθέσεις για την επίτευξη των επιθυμητών ιδιοτήτων στα μέρη της συγκόλλησης. Alcune delle leghe di zinco più comunemente utilizzate per la pressofusione includono:
1. Leghe di zama:
• Zama 3 (ASTM AG40A): è la lega di zinco più utilizzata per la pressofusione. Zamak 3 fornisce un buon equilibrio tra resistenza, duttilità e fluidità durante la fusione. È comunemente utilizzato per un’ampia gamma di applicazioni, tra cui componenti automobilistici, elettronica di consumo e vari prodotti per la casa.
- Zamak 5 (ASTM AC41A): παρόμοιο με το Zamak 3, αλλά με μεγαλύτερες ποσότητες αλουμινίου, που εγγυάται μεγαλύτερη αντοχή και σκληρότητα. Το Zamak 5 επιλέγεται ειδικά για εφαρμογές στις οποίες οι ιδιότητες του υλικού είναι βελτιωμένες.
- Zamak 2 (ASTM AC43A): το συγκεκριμένο υλικό έχει μεγαλύτερη αντοχή και σκληρότητα σε σχέση με το Zamak 3, καθιστώντας το κατάλληλο για εφαρμογές που απαιτούν βελτιωμένες κατασκευαστικές επιδόσεις. Tuttavia, è meno comunemente usato di Zamak 3 e Zamak 5.
2. Leghe ZA:
- ZA-8 (ASTM AG40B): το πόδι περιέχει μεγαλύτερη ποσότητα αλουμινίου σε σχέση με τα παραδοσιακά πόδια Zamak, παρέχοντας μεγαλύτερη αντοχή και αντοχή. ZA-8 viene spesso scelto per applicazioni in cui è necessaria una maggiore prestazione meccanica, come nella produzione di parti soggette a sollecitazioni maggiori.
- ZA-12 (ASTM AG40C) και ZA-27 (ASTM AG40D): τα εν λόγω τεμάχια έχουν αυξημένη περιεκτικότητα σε αργίλιο σε σχέση με το ZA-8, με συνεπακόλουθες βελτιώσεις στην ανθεκτικότητα και το κύρος. Τα ZA-12 και ZA-27 χρησιμοποιούνται σε εφαρμογές στις οποίες η αυξημένη αντοχή και η διάρκεια ζωής είναι θεμελιώδεις, όπως σε βιομηχανικά εξαρτήματα υψηλής αντοχής.
3. Άλλες ποικιλίες ζίνκο:
- Πέλματα από ψευδαργύρου-αλλουμίνιο (ZA): εκτός από τα ZA-8, ZA-12 και ZA-27, υπάρχουν και άλλα πέλματα από ψευδαργύρου-αλλουμίνιο με ποικίλες συνθέσεις για την ικανοποίηση συγκεκριμένων απαιτήσεων κύρους.
• Leghe di zinco-alluminio-rame (ZAC): queste leghe possono contenere rame oltre all’alluminio, fornendo proprietà meccaniche migliorate.
4. Leghe specializzate:
- Leghe di zinco-titanio (ZT): αυτά τα πόδια μπορούν να ενσωματώσουν μικρές ποσότητες τιτανίου για να βελτιώσουν την ανθεκτικότητα και τη σκληρότητα.
- Superloy: μια τροποποιημένη εκδοχή του Zamak, το Superloy περιέχει μικρές ποσότητες ραμέ, νικελίου και μαγνησίου για τη βελτίωση των μηχανικών ιδιοτήτων και την ανακούφιση από την ευαισθησία στη διαλυτοποίηση του stampo.
La scelta della lega di zinco dipende dai requisiti specifici dell’applicazione, considerando fattori quali proprietà meccaniche, colabilità, costo e considerazioni ambientali. I progettisti e i produttori selezionano attentamente la lega che meglio soddisfa le esigenze dell’applicazione prevista.
PRESSOFUSIONE DI ZINCO O PRESSOFUSIONE DI ALLUMINIO? ΥΠΆΡΧΕΙ ΚΑΛΎΤΕΡΗ ΕΠΙΛΟΓΉ;
L’alluminio si distingue come la lega predominante nella pressofusione, con A380 e ADC 12 che sono le leghe di alluminio per pressofusione più utilizzate. Rinomate per la loro miscela ottimale di proprietà del materiale e colabilità, queste leghe trovano ampio utilizzo in vari settori. La versatilità delle pressofusioni in lega di alluminio è evidente nella loro applicazione nell’elettronica, nelle apparecchiature di comunicazione, nei componenti automobilistici, nelle scatole degli ingranaggi, negli alloggiamenti dei tosaerba, negli utensili manuali ed elettrici e in una miriade di altri prodotti.
Per pressofusioni più piccole o che richiedono sezioni più sottili, vengono comunemente utilizzate le leghe di zinco e ZA. Le leghe di zinco, in particolare, consentono una maggiore flessibilità nello spessore della sezione e mantengono tolleranze più strette. In particolare, la resistenza agli urti dei componenti pressofusi in zinco supera quella di altre leghe metalliche prevalenti. Inoltre, l’utilizzo delle leghe di zinco e ZA richiede pressioni e temperature inferiori rispetto alle leghe di magnesio e alluminio. Ciò non solo si traduce in una durata significativamente più lunga dello stampo, ma comporta anche una manutenzione minima.
La scelta della lega più adatta per un’applicazione specifica dipende dalle specifiche di progettazione. Ciascuna lega presenta proprietà fisiche e meccaniche distinte che si allineano con l’applicazione prevista del prodotto finale. La produzione di pressofusione di alluminio si rivela ottimale per le applicazioni leggere, mentre la pressofusione di zinco brilla in scenari che richiedono componenti più piccoli o più sottili. Per i progettisti di prodotti alla ricerca di un fornitore di pressofusione, una conoscenza approfondita delle leghe offerte e dei vantaggi associati è fondamentale per prendere decisioni informate.